WX station 433 MHz OOK remote sensor, channel change signal.
Arduino Due & Dragino 433 MHz Lora Shield (Semtech SX1278).

due-sx1278.jpg

remsens.jpg

ser-ouput.jpg

#include <SPI.h>

#define SERIAL_SPEED        38400
#define FREQ                433.983
#define BPS                 1800
#define STATE_SLEEP         0
#define STATE_STANDBY       1
#define STATE_FSRX          4
#define STATE_RX            5
#define S_DELAY             10
#define L_DELAY             100
#define SX_FREQ             "Frequency "
#define SX_VERSION          "Version code of the chip "
#define SX_RX               "RX..."
#define RCS_RX              "Received "
#define RCS_SEP             " / "
#define RCS_UNKNOWN_ENC     "Unknown encoding"
#define RCS_BIT             "bit "
#define RCS_PROTOCOL        "Protocol: "
#define CH_FILTER_BW        B00001100       // 25 kHz

#define DATA_PIN            7

#define RegFifo             0x00
#define RegOpMode           0x01
#define RegBitrateMsb       0x02
#define RegBitrateLsb       0x03
#define RegFrfMsb           0x06
#define RegFrfMid           0x07
#define RegFrfLsb           0x08
#define RegPaRamp           0x0a
#define RegRssiConfig       0x0e
#define RegRssiThresh       0x10
#define RegRxBw             0x12
#define RegOokPeak          0x14
#define RegPreambleDetect   0x1f
#define RegSyncConfig       0x27
#define RegPacketConfig1    0x30
#define RegPacketConfig2    0x31
#define RegPayloadLength    0x32
#define RegIrqFlags2        0x3f
#define RegDioMapping1      0x40
#define RegVersion          0x42

#define SX_OSC_FREQ         32000000
#define SX_RESET            9
#define SX_RESET_DELAY_H    5
#define SX_RESET_DELAY_L    100
#define SPI_SS              10
#define SPI_RW_DELAY        50

volatile uint32_t pulse_len = 0;

void setup() {
  Serial.begin(SERIAL_SPEED);
  if (initSX()) {
    pinMode(DATA_PIN, INPUT);
    Serial.print(F(SX_VERSION));
    Serial.print(readSPI(RegVersion));
    Serial.println();
    delay(S_DELAY);
    startFSK();
    // Set OOK
    uint8_t b = readSPI(RegOpMode);
    bitClear(b, 6);
    bitSet(b, 5);
    writeSPI(RegOpMode, b);

    // Channel filter bandwidth control
    writeSPI(RegRxBw, CH_FILTER_BW);

    setFreq(FREQ);
    Serial.print(F(SX_FREQ));
    Serial.println(FREQ, DEC);
    setBps(BPS);

    // Bits 7-6: AutoRestartRxMode, 01  On, without waiting for the PLL to re-lock
    // Bit 4: Enables the Sync word generation and detection: 0 =>  Off, 1 =>  On
    // Bit 5: Sets the polarity of the Preamble. 0  0xAA, 1  0x55
    // Bits 2-0: Size of the Sync word (SyncSize + 1)
    b = readSPI(RegSyncConfig);
    bitClear(b, 7);
    bitSet(b, 6);
    bitClear(b, 4);
    bitClear(b, 5);
    writeSPI(RegSyncConfig, b);

    // Bits 6-5: Defines DC-free encoding/decoding performed: 00->none, 01->manchester, 10->whitening
    // Bit 7: packet format, 0 = fixed length, 1 = variable length
    // Bit 4: crc calc/check, 0 = off, 1 = on
    // Bits 2-1: Defines address based filtering in Rx: 00  None (Off)
    // Bit 3: Defines the behavior of the packet handler when CRC check fails:
    // 0 => Clear FIFO and restart new packet reception. No PayloadReady interrupt issued.
    // 1 =>  Do not clear FIFO. PayloadReady interrupt issued.
    // Bit 0: Selects the CRC and whitening algorithms:
    // 0  CCITT CRC implementation with standard whitening
    // 1  IBM CRC implementation with alternate whitening
    writeSPI(RegPacketConfig1, 0);

    // Data processing mode: 0 => Continuous mode, 1 => Packet mode
    b = readSPI(RegPacketConfig2);
    bitClear(b, 6);
    writeSPI(RegPacketConfig2, b);
    
    // Set DIO mapping
    b = readSPI(RegDioMapping1);
    bitClear(b, 5);
    bitClear(b, 4);
    bitClear(b, 3);
    bitClear(b, 2);
    writeSPI(RegDioMapping1, b);

    // Bit 5: enables the Bit Synchronizer:
    // 0 -> bit sync disabled (not possible in packet mode), 1 -> bit sync enabled
    b = readSPI(RegOokPeak);
    bitClear(b, 5);
    writeSPI(RegOokPeak, b);

    // RegPreambleDetect (0x1f). Enables Preamble detector when set to 1.
    // The AGC settings supersede this bit during the startup / AGC phase.
    // Bit 7: 0 -> turned off, 1 -> turned on
    // Bits 6-5: Number of Preamble bytes to detect to trigger an interrupt.
    // 00  1 byte, 10  3 bytes, 01  2 bytes
    b = readSPI(RegPreambleDetect);
    bitClear(b, 7);
    writeSPI(RegPreambleDetect, b);

    clearFifoAndFlags();

    setState(STATE_FSRX);
    delay(L_DELAY);
    setState(STATE_RX);
    delay(S_DELAY);
    Serial.println(F(SX_RX));
    attachInterrupt(digitalPinToInterrupt(DATA_PIN), isr, CHANGE);
  }
}

void loop() {
  if ((pulse_len > 500) && (pulse_len < 3000)) {
    Serial.println(pulse_len);
  }
}

void isr() {
  static uint32_t last_irq_ti = 0;
  uint32_t t = micros();
  pulse_len = t - last_irq_ti;
  last_irq_ti = t;
}

void clearFifoAndFlags() {
  // Flag(s) and FIFO are cleared when this bit is set
  uint8_t b = readSPI(RegIrqFlags2);
  bitSet(b, 4);
  writeSPI(RegIrqFlags2, b);
  delay(S_DELAY);
}

void setBps(uint16_t bps) {
  uint16_t baudRate = SX_OSC_FREQ / bps;
  writeSPI(RegBitrateMsb, baudRate >> 8);
  writeSPI(RegBitrateLsb, baudRate & 0xff);
}

void setFreq(float f)
{
  uint32_t lf = (f * 1000000) / 61.035;
  writeSPI(RegFrfMsb, (lf >> 16) & 0xff);
  writeSPI(RegFrfMid, (lf >> 8) & 0xff);
  writeSPI(RegFrfLsb, lf & 0xff);
}

void setState(uint8_t s) {
  uint8_t b = readSPI(RegOpMode);
  b = b | s;
  writeSPI(RegOpMode, b);
}

void startFSK()
{
  setState(STATE_SLEEP);
  delay(S_DELAY);
  uint8_t b = readSPI(RegOpMode);
  bitClear(b, 7);
  writeSPI(RegOpMode, b);
}

bool initSX() {
  pinMode(SX_RESET, OUTPUT);
  resetSX();
  initSPI();
  if (readSPI(RegVersion) == 0) {
    return false;
  }
  setState(STATE_STANDBY);
  return true;
}

void resetSX() {
  digitalWrite(SX_RESET, LOW);
  delayMicroseconds(SX_RESET_DELAY_L);
  digitalWrite(SX_RESET, HIGH);
  delay(SX_RESET_DELAY_H);
}

uint8_t readSPI(uint8_t addr) {
  digitalWrite(SPI_SS, LOW);
  SPI.transfer(addr);
  delayMicroseconds(SPI_RW_DELAY);
  uint8_t v = SPI.transfer(0x00);
  digitalWrite(SPI_SS, HIGH);
  return v;
}

void writeSPI(uint8_t addr, uint8_t v) {
  digitalWrite(SPI_SS, LOW);
  SPI.transfer(addr | 0x80);
  delayMicroseconds(SPI_RW_DELAY);
  SPI.transfer(v);
  digitalWrite(SPI_SS, HIGH);
}

void initSPI()
{
  digitalWrite(SPI_SS, HIGH);
  pinMode(SPI_SS, OUTPUT);  
  SPI.begin();
  SPI.setDataMode(SPI_MODE0);
  SPI.setBitOrder(MSBFIRST);
}